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ABSTRACT

Objective: This study compares the effectiveness of machine learning and deep learning models in predicting hemodialysis patients’ length of 
stay in the intensive care unit (ICU).

Methods: This retrospective cohort study used data from 980 poisoned patients undergoing hemodialysis. A variety of eight well-known machine 
learning [support vector machine, extreme gradient boosting, random forest (RF), decision tree] and deep learning (deep neural network, 
feedforward neural network, long short-term memory, convolutional neural network) models were employed.

Results: Feature importance analyses using Shapley Additive exPlanation and local interpretable model-agnostic explanation methodologies 
identified Glasgow Coma Scale (GCS <8), intubation, acute kidney injury, PO2, blood urea nitrogen, metabolic acidosis, and number of 
hemodialysis sessions as key predictors of ICU stay duration in poisoned hemodialysis patients, with intubation score, GCS score, and ICU 
admission type being the most significant predictors. Overall, the RF model displayed exceptional performance across various metrics. 

Conclusion: Our findings emphasize the importance of neurological status, respiratory function, and renal injury in predicting ICU duration, 
offering valuable insights for clinical decision-making and resource allocation in this high-risk population. 
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INTRODUCTION 

Poisoning, whether intentional or accidental, is a significant 
health issue worldwide, imposing substantial financial, 
physical, and mental burdens on patients, families, and 
society (1,2). According to the World Health Organization 
(WHO), over 3 million people are poisoned annually, 
resulting in 220,000 deaths, mostly in developing countries 
due to easy access to toxic substances, lack of awareness, 
and limited hospital resources (3,4). Poisoning accounts 
for over 2.4% of emergency department visits and 3-6% 
of intensive care unit (ICU) admissions (5,6). While most 
poisoned patients recover with supportive treatment, 
critically ill patients with severe symptoms are admitted 
to ICUs for intensive care and monitoring. Studies show 
that 4.1-30.8% of life-threatening poisoning cases require 
ICU admission. In developing countries, including Iran, 
poisoning incidents, especially from pesticides and rice 
tablets, have doubled in recent decades despite improved 
ICU facilities (7,8).

Hemodialysis patients are frequently admitted to the ICU 
due to poisoning, with about 2% of chronic dialysis patients 
requiring ICU care annually. They are at increased risk 
of infections due to factors like immune deficiency from 
uremia, impaired phagocytic function, older age, and 
comorbidities such as diabetes. Frequent use of vascular 
access for hemodialysis heightens the risk of bloodstream 
infections (9). Managing poisoned hemodialysis patients in 
the ICU is challenging due to their altered pharmacokinetics 
and pharmacodynamics, which affect toxin clearance. Renal 
failure complicates toxin elimination, often necessitating 
hemodialysis. Additionally, these patients are prone to fluid 
and electrolyte imbalances, requiring close monitoring. 
Infections, especially bloodstream infections from vascular 
access, are a major concern for immunocompromised 
patients (10). Comprehensive ICU management for these 

patients involves toxin removal, careful renal replacement 
therapy, fluid balance, electrolyte management, and 
infection control.

Moreover, healthcare systems face constant pressure to 
improve patient outcomes and reduce costs. ICUs, which 
provide critical care, are expensive and resource-intensive 
(11,12). The increasing number of poisoned patients has 
heightened the demand for ICU beds. The WHO highlights 
the importance of monitoring the length of stay (LOS) as a 
measure of care quality and resource use (13,14). Patients 
with prolonged LOS consume a significant portion of 
resources, so reducing LOS can enhance bed turnover, 
optimize resource allocation, improve patient safety, and 
lower costs. Identifying patients with long LOS, particularly 
in overwhelmed hospitals, can alleviate pressure and boost 
ICU efficiency. Policymakers are adopting evidence-based 
solutions to optimize ICU resources like beds, staff, and 
mechanical ventilation (15-17).

Recently, artificial intelligence-based solutions such as 
machine learning (ML) and deep learning (DL) have gained 
further attention for their ability to predict the outcome of 
interest based on a great amount of data, especially when 
the relationships between variables are complex and non-
linear (18-20). DL and ML models can be used for predicting 
the patients’ ICU LOS (21,22). These models leverage 
large datasets comprising patient demographics, clinical 
variables, and possibly real-time monitoring data such as 
vital signs and laboratory results (21). By analyzing patterns 
and correlations within these data, DL and ML algorithms 
can generate accurate predictions of how long a patient 
is likely to stay in the ICU (22,23). This predictive capability 
not only helps in optimizing resource allocation and bed 
management but also assists healthcare providers in 
identifying patients at risk of prolonged ICU stays early on, 
enabling proactive interventions and potentially improving 
patient outcomes (21,24).

ÖZ

Amaç: Bu çalışma, hemodiyaliz hastalarının yoğun bakım ünitesinde (YBÜ) kalış sürelerini tahmin etmede makine öğrenimi ve derin öğrenme 
modellerinin etkinliğini karşılaştırır.

Gereç ve Yöntem: Bu retrospektif kohort çalışmasında, hemodiyalize giren 980 zehirlenmiş hastadan alınan veriler kullanılmıştır. Çeşitli sekiz 
iyi bilinen makine öğrenmesi (destek vektör makinesi, aşırı gradyan artırma, rastgele orman, karar ağacı) ve derin öğrenme (derin sinir ağı, ileri 
beslemeli sinir ağı, uzun kısa süreli bellek, evrişimli sinir ağı) modeli kullanılmıştır.

Bulgular: Shapley Katkı Açıklaması ve yerel yorumlanabilir modelden bağımsız açıklama metodolojileri kullanılarak yapılan özellik önem analizleri, 
zehirlenmiş hemodiyaliz hastalarında YBÜ’de kalış süresinin temel belirleyicileri olarak Glasgow Koma Skalası (GCS <8), entübasyon, akut böbrek 
hasarı, PO2, kan üre azotu, metabolik asidoz ve hemodiyaliz seansı sayısını belirlemiştir. En önemlileri entübasyon puanı, GCS puanı ve YBÜ’ye 
kabul türü olmuştur. Genel olarak, rastgele orman modeli çeşitli ölçütlerde olağanüstü bir performans göstermiştir.

Sonuç: Bulgularımız, YBÜ’de kalış süresini tahmin etmede nörolojik durum, solunum fonksiyonu ve böbrek hasarının önemini vurgulamakta ve bu 
yüksek riskli popülasyonda klinik karar alma ve kaynak dağıtımı için değerli bilgiler sunmaktadır.

Anahtar Kelimeler: Makine öğrenimi, derin öğrenme, kalış süresi, yoğun bakım, zehirlenme
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To the best of our knowledge, no study has compared ML 
models with DL models for predicting ICU stay duration 
for hemodialysis patients with poisoning. Therefore, 
the purpose of this study is to develop and evaluate the 
effectiveness of both ML and DL models in predicting the 
ICU LOS for hemodialysis patients suffering from poisoning. 
By comparing the performance of these models, we aim to 
identify the most accurate and reliable approach, ultimately 
improving resource allocation and patient outcomes in 
critical care settings.

METHODS 

Study Design and Setting 

This retrospective cohort study was performed among all 
poisoned patients who were admitted to the ICU at the 
Loghman Hakim Hospital (LHH) between January 1, 2016, 
and December 31, 2020. The hospital, which is known as 
the Iran’s largest poison center, is crucial for managing 
patients who need specialized care as a result of various 
poisonings and toxic exposures. The ICU of LHH is essential 
to the management of critical situations, providing cutting-
edge medical techniques and specialized care to guarantee 
the best outcomes for patients. In this study, the LOS of 
patients who were admitted to the ICU was analyzed. 
Patients were categorized into two groups based on the 
LOS: short (lasting 4 days or less), and long (exceeding 4 
days). We utilized several data-driven ML and DL models 
to develop an accurate prediction model the ICU LOS in 

poisoned patients undergoing hemodialysis. The key steps 
taken were as follows (Figure 1): 

- 	 establishing the study roadmap and experiment 
environment, 

- 	 preprocessing the data, 

- 	 using feature selection algorithms, 

- 	 selecting appropriate classification algorithms and their 
hyperparameters, 

- 	 splitting the data into training and testing sets, and 

- 	 evaluating model performance.

Data Collection and Preprocessing 

The data set was collected by reviewing the electronic 
medical records (EMRs) of patients undergoing hemodialysis 
who were poisoned admitted to the ICU at LHH between 
January 2016 and December 2020. Relevant variables were 
extracted from poisoned patient records and entered into a 
database. Age, sex, kind of poisoning, history of underlying 
conditions, medication usage and habits, laboratory test 
results, and vital signs, number of extracorporeal technique 
uses, type of extracorporeal method, and patient outcome 
were among the variables under investigation (Table 1). 

Statistical Analysis

In this study, before further analysis and feeding data into 
ML methods, the rows of datasets collected from EMRs 
laboratory tests, underwent a series of preprocessing steps. 

Figure 1. The road map of the proposed system for the prognosis of poisoned patients who are candidates for dialysis
AUC: Area under the curve, LOS: Length of stay, XGB: Extreme gradient boosting, SVM: Support vector machine, RF: Random forest, DT: Decision 
tree, DNN: Deep neural network, FNN: Feedforward neural network, CNN: Convolutional neural network
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Table 1. The descriptive statistics of variables

Demographic data 

Variables Frequency (%) Values 

Gender 
Female 187 (19.1%)

Female/male 
Male 793 (80.9%)

Age (year)

17-20 100 (10/4%)

Numerical 
21-40 604 (61.6%)

41-60 211 (21.5%)

>61 65 (6.6%)

Co-ingestion 62 (6.3%) Yes/no

Smoking  46 (4.7%) Yes/no

Alcohol consumption 627 (64%) Yes/no

Opium abuse 75 (7.7%) Yes/no

Stimulants abuse 13 (1.3%) Yes/no

History of the previous disease 150 (15.3%) Yes/no

History of taking medication 77 (7.9%) Yes/no

Hemoperfusion 9 (0/9%) Yes/no

Intubation 203 (20.7%) Yes/no

Antidote therapy 904 (92.2%) Yes/no

Duration of hospitalization (day) median (min-max) 8 (1-116) Numerical 

Laboratory and clinical data

13≤GCS<15 659 (67.2%) Numerical

8≤GCS<13 62 (6.3%) Numerical

Coma (GCS <8) 108 (11%) Yes/no

Bradypnea 46 (4.7%) Numerical

Temperature (mean±SD) 36.9±0.56 Numerical

Bradycardia 14 (1.4%) Numerical

Tachycardia 145 (14.8%) Numerical

Hypotension 38 (3.9%) Numerical

Hypertension 293 (29.9%) Numerical

Metabolic acidosis 823 (84%) Numerical

Acute kidney injury (AKI) 536 (54.7%) Numerical

Renal disease 641 (65%) Yes/no

Serum HCO3 (mean±SD) 14.4±23.8 Numerical

BUN (meq/L) (mean±SD) 36.7±27.2 Numerical

Creatinine (meq/L) (mean±SD) 1.7±4.1 Numerical

Blood glucose (mg/dL) (mean±SD) 132.5±66.6 Numerical

Blood pH (mean±SD) 7.2±0.4 Numerical

Sodium (meq/L) (mean±SD) 137.8±10.8 Numerical

Potassium (meq/L) (mean±SD) 4.7±3.4 Numerical

Partial pressure of carbon dioxide (PCO2), partial pressure of oxygen (PO2), bicarbonate 
(HCO3), base excess (BE), blood sugar (Bs), white blood cell count (WBC), hemoglobin 
(Hb), hematocrit (Hct), platelet count (PLT), aspartate aminotransferase (AST), alanine 
aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), creatine 
phosphokinase (CPK), creatine phosphokinase-MB (CPK-MB), prothrombin time (PT), 
partial thromboplastin time (PTT), international normalized ratio (INR).

Numerical

Outcome variable: ICU LOS	
Short LOS ≤4 days 640 Yes/no

Long LOS >4 days 340 Yes/no

ICU: Intensive care unit, LOS: Length of stay, SD: Standard deviation, GCS: Glasgow Coma Scale
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These steps include; any rows with over 70% missing values 
were removed. Patient data were excluded if they were 
missing critical demographic or clinical information (e.g., 
comorbidities) necessary for analysis. Additionally, duplicate 
records and entries with inconsistent or implausible values 
(e.g., negative age or erroneous laboratory results) were 
excluded to ensure data quality. Missing values for remaining 
variables were handled using imputation techniques where 
feasible, and rows with irreparable missingness for key 
variables were removed. Next, minimum-maximum scaling 
was applied to normalize all values between 0 and 1. 
Standard scaler scaling was then used to standardize the 
data distribution. Data validation checked the integrity and 
accuracy of the dataset. To handle class imbalance, under-
sampling, balanced the classes by keeping all samples from 
the minority class.

After preprocessing, the final dataset contained 980 
patients. This dataset was randomly split so that 70% of the 
data (686 patients) was assigned to the training set, and the 
remaining 30% (294 patients) was assigned to the test set. 
The training set was used to develop the feature selection 
and ML models, while the test set was held out for model 
evaluation. The descriptive statistics of the variables in the 
dataset are shown in Table 1. This includes variable names, 
the frequency of each variables, and their values.

Model Development and Evaluations 

The LOS in the ICU for hemodialysis patients with poisoning 
was predicted using eight well-known models from the 
domains of DL and ML. Convolutional neural networks 
(CNN), feedforward neural networks, long short-term 
memory (LSTM), and deep neural networks (DNN) were 
among the DL models. The ML models included random 
forest (RF), decision tree (DT), support vector machine, and 
extreme gradient boosting (XGB).

Cross-validation and Tweaking of Hyperparameters 

We trained all suggested models using 10-fold cross-
validation to reduce overfitting. The dataset is divided 
into ten equal segments using this method. The model is 
trained on nine segments and validated on the remaining 
segments in each iteration. To ensure complete validation, 
this procedure is carried out ten times. A robust assessment 
of the model’s overall performance is provided by the final 
performance metric, which is produced by averaging the 
outcomes from each iteration (25).

In addition to 10-fold cross-validation, we implemented 
other regularization techniques such as L2 regularization 
and dropout to further reduce the risk of overfitting. L2 
regularization adds a penalty to the loss function based on 

the magnitude of the model’s coefficients, discouraging 
overly complex models. Furthermore, we monitored training 
and validation loss during the training process to detect 
signs of overfitting early. Early stopping was employed to 
halt training if the validation loss did not improve for a pre-
defined number of epochs, thus preventing the model from 
overfitting to the training data.

We also performed hyperparameter tuning to improve the 
performance of each method. Using a grid search approach, 
we methodically assessed a large number of hyperparameter 
values. Finding the parameter configurations that maximize 
each model’s accuracy and efficiency was the goal. We 
successfully adjusted the models because of this exhaustive 
and repetitive analysis of the hyperparameter space. Our 
models’ capacity to assess and forecast outcomes using 
the provided dataset is greatly improved by this meticulous 
calibration (26).

Justification and Explanation of the Machine Learning 
and Deep Learning Models’ Output 

Because of their intricate and opaque internal workings, 
ML and DL techniques are commonly referred to as “black 
box” models (27,28). This intricacy frequently leads to a lack 
of interpretability, which can be especially troublesome in 
crucial domains, like healthcare, where comprehending the 
reasoning behind forecasts is essential. Researchers have 
been creating methods to improve the interpretability of 
these models in order to address this problem. Shapley 
Additive exPlanations (SHAP), first presented by Lundberg 
and Lee (29), is a well-known technique that has gained 
popularity recently. By utilizing the idea of Shapley values 
from cooperative game theory, SHAP seeks to clarify the 
predictions of ML models. Because of its ability to yield 
insightful information on model predictions, this method 
has become widely accepted and used in a variety of fields, 
including clinical research (30,31).

In our study, we incorporated SHAP to interpret the outputs 
of our ML and DL models. By applying SHAP, we were 
able to break down the predictions into contributions from 
each feature, offering a clear and detailed understanding 
of how each variable influenced the model’s decisions. 
This transparency is particularly valuable in healthcare 
applications, as it allows clinicians to trust and verify 
the predictions made by the models. Furthermore, we 
complemented SHAP with other interpretability techniques, 
such as local interpretable model-agnostic explanations 
(LIME) and feature importance analysis, to provide a 
multifaceted view of model behavior. These methods 
together helped us ensure that our models were not only 
accurate but also interpretable and trustworthy.
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By integrating these interpretability methods, we aimed to 
bridge the gap between model complexity and usability, 
ensuring that our ML and DL models can be effectively 
deployed in real-world healthcare settings, where 
understanding and trust are paramount. This comprehensive 
approach to interpretability underscores our commitment 
to developing reliable and transparent predictive models 
that can aid in critical decision-making processes.

Model Performance Evaluation 

Performance measures obtained from the confusion matrix 
were used to thoroughly assess the efficacy of both ML and 
DL models, as shown below. Key performance indicators 
such as accuracy, specificity, sensitivity, F1-score, and the 
receiver operating characteristic (ROC) curve were used in a 
thorough evaluation of the predictive models.

1) Accuracy =
TP+TN

TP+TN+FP+FN
100*

2) Sensitivity =
Tp

TP+FN
100*

3) Sensitivity =
TN

TN+FP
100*

5) f - measure = 2
precision*sensitivity
precision+ sensitivity 

 

Ethical Considerations

For this study, ethical approval was obtained from the 
ethics committee at Shahid Beheshti University of Medical 
Sciences (approval no: IR.SBMU.RETECH.REC.1401.767, 
date: 12.02.2023). Due to the study’s non-invasive 
methodology and strict adherence to patient anonymity 
and data confidentiality, the ethics committee granted a 
waiver for written informed consent. This waiver ensured 
the collection of confidential data without any identifying 
information. Access to the data was limited to the research 
team, thereby mitigating any potential risk to patients in 
accordance with the study’s protocols.

RESULTS 

Patients’ Characteristics

This retrospective observational study examined data from 
68,181 patients hospitalized for poisoning over a specified 
time. After applying exclusion criteria, 980 (1.4%) underwent 
hemodialysis. The cohort included 793 (80.9%) males and 
187 (19.1%) females with a mean age of 36.5±14 years. The 
age distribution significantly differed, with most patients 
(604, 61.6%) aged 21-40 years, (p<0.001). Intentional 
poisoning accounted for 117 (11.9%) cases. Methanol was 
the most common poisoning agent (858, 87.6%), followed by 

multidrug ingestions. The majority (830, 84.7%) had no prior 
history of kidney disease, and 903 (92.1%) had no prior drug 
use. However, 627 (64%) admitted alcohol use. Hemodialysis 
was the most widely used extracorporeal method (980 
cases, 99.1%). Hemoperfusion was additionally used to treat 
9 patients poisoned by methanol, multidrug ingestions, or 
methadone. This study characterized the demographics, 
toxins, and extracorporeal treatment approaches for a large 
cohort of poisoned patients requiring hemodialysis. Figure 
2 shows the cause of intoxication in the studied patients.

Hyperparameters Tuning 

Table 2 presents the tuned hyperparameters of four ML 
algorithms. 

Performance Evaluation of Selected Models 

Deep Learning Models 

Table 3 presents the performance assessment of selected 
models. According to the findings in this table, the best 
DL model identified is the CNN with a sensitivity of 82%, 
specificity of 83%, accuracy of 95%, and F1-score of 82%. 
The best ROC value was associated with the DNN model.

Machine Learning Models 

Overall, the performance of the RF model was superior to all 
other models, with a sensitivity of 92%, an accuracy of 98%, 
an F1-score of 98%, and an ROC score of 98%. However, the 
XGB model also achieved a sensitivity of 92%, an accuracy 
of 98%, and an ROC score of 98%. Additionally, the DT 
model achieved a sensitivity of 92% and an accuracy of 98%.

Deep Learning vs. Machine Learning Models 

In terms of sensitivity, DL models performed from 80.0% to 
82.0%, whereas ML models achieved sensitivities between 

Figure 2. Cause of intoxication in the studied patients
MDT: Multiple drug toxicity
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80.0% and 92.0%. The specificity of DL models ranged from 

78.0% to 83.0%, whereas ML models achieved specificities 

between 84.0% and 94.0%. DL models had an accuracy 

ranging from 94.0% to 95.0%, compared to ML models, 

which ranged from 95.0% to 98.0%. The F1-scores for DL 

models were between 79.0% and 82.0%, while ML models 

ranged from 82.0% to 95.0%. Additionally, DL models 

achieved ROC scores between 97.0% and 98.0%, whereas 

ML models had ROC scores ranging from 95.0% to 98.0%.

Overall, while the RF model demonstrated exceptional 
performance across various metrics, other ML models 
showed superior performance compared to DL models 
across most measures.

Figure 3 shows the performance of various ML and DL 
models in predicting ICU stay duration for hemodialysis 
patients with poisoning, while Figure 4 compares the ROC 
curves of these models.

Table 2. Hyperparameters selected for ML and DL models

ML and DP models Hyper parameters

CNN 
Conv1D: filters: 64, kernel size: 3, activation: ‘relu’, MaxPooling1D: pool size: 2
dense (layer 1): units: 64 activation: ‘relu’, dense (output layer):
units: 1, activation: ‘sigmoid’, optimizer: ‘adam’, loss function: ‘binary_crossentropy’, epochs: 10, batch size: 32

DT
Criterion: ‘gini’, max depth: none, min samples split: 2, min samples leaf: 1, max features: none, splitter: ‘best’, 
random state: 42

DNN
Dense (layer 1): units: 64, activation: ‘relu’, input shape: (X.shape[1],) dense (layer ) units: 32, activation: ‘relu’, dense 
(output layer): units: 1, activation: ‘sigmoid’ optimizer: ‘adam’, loss function: ‘binary_crossentropy’, epochs: 10, batch 
size: 32

FNN Hidden layer sizes: (100,) max iterations: 1000, random state: 42, n_splits: 10, shuffle: true, random_state: 42

LSTM

Units: 100, input_shape: (X_train.shape[1], X_train.shape[2]) optimizer: ‘adam’
loss: ‘binary_crossentropy’ metrics: [‘accuracy’]
Training hyperparameters epochs: 100, batch_size: 32, verbose: 0
StratifiedKFold parameters, n_splits: 10, huffle: true, random_state: 42

RF n_estimators: 100, random_state: 42

SVM Kernel: ‘linear’, robability: true, random_state: 42

XGB

Base_score: 0.5, booster: gbtree, colsample_bylevel: 1, colsample_bynode: 1
colsample_bytree: 1, gamma: 0, gpu_id: -1, importance_type: gain, learning_rate: 0.300000012, max_delta_step: 
0, max_depth: 6, min_child_weight: 1, missing: nan, monotone_constraints: () n_estimators: 100, random_state: 42, 
validate_parameters: 1

XGB: Extreme gradient boosting, SVM: Support vector machine, RF: Random forest, DT: Decision tree, DNN: Deep neural network, FNN: Feedforward neural 
network, CNN: Convolutional neural network, LSTM: Long short-term memory, ML: Machine learning, DL: Deep learning

Table 3. Performance evaluation of selected models

Models 
Performance of each deep learning models 

Sensitivity (%) Specificity (%) Accuracy (%) F1-score (%) ROC (%)

CNN 82.0 83.0 95.0 82.0 97.0

LSTM 82.0 80.0 94.0 81.0 97.0

DNN 80.0 82.0 94.0 81.0 98.0

FNN 80.0 78.0 94.0 79.0 97.0

Models 
Performance of each machine learning models 

Sensitivity (%) Specificity (%) Accuracy (%) F1-score (%) ROC (%)

RF 92.0 92.0 98.0 95.0 98.0

DT 92.0 92.0 98.0 92.0 95.0

SVM 80.0 84.0 95.0 82.0 96.0

XGB 90.0 94.0 98.0 90.0 98.0

XGB: Extreme gradient boosting, SVM: Support vector machine, RF: Random forest, DT: Decision tree, DNN: Deep neural network, FNN: Feedforward neural 
network, CNN: Convolutional neural network, LSTM: Long short-term memory, ROC: Receiver operating characteristic
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Figure 3. Performance evaluation of ML and DL models in predicting ICU stay duration for hemodialysis patients with poisoning
XGB: Extreme gradient boosting, SVM: Support vector machine, RF: Random forest, DT: Decision tree, DNN: Deep neural network, CNN: 
Convolutional neural network, FNN: Feedforward neural network, LSTM: Long short-term memory, ML: Machine learning, DL: Deep learning, 
ICU: Intensive care unit, AUC: Area under the curve
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Figure 4. ROC curves comparing ML and DL models in predicting ICU stay duration for hemodialysis patients with poisoning
XGB: Extreme gradient boosting, SVM: Support vector machine, RF: Random forest, DT: Decision tree, DNN: Deep neural network, CNN: 
Convolutional neural network, FNN: Feedforward neural network, LSTM: Long short-term memory, ROC: Receiver operating characteristic, ML: 
Machine learning, DL: Deep learning, ICU: Intensive care unit
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Explanation and Justification the Output of Machine 
Learning and Deep Learning Models 

Shapley Additive exPlanations (SHAP) 

The SHAP summary plot shows the impact of each feature 
on the model’s output, with higher values indicating a 
greater positive impact and lower values indicating a 
greater negative impact (Figure 5). For example, the feature 
“intubation” has a positive impact on the model’s output, 
while the feature “blood glucose” has a negative impact. 
The most important features for predicting the duration 
of ICU stay among hemodialysis patients suffering from 
poisoning were intubation score, GCS score, and ICU 
admission type.

Local Interpretable Model-agnostic Explanations (LIME)

Figure 6 illustrates LIME plots depicting the cumulative 
influence of essential features on the model’s prediction of 
ICU stay duration for hemodialysis patients with poisoning. 
The most influential features were GCS <8, intubation, 
acute kidney injury (AKI), PO2, blood urea nitrogen (BUN), 
metabolic acidosis, and number of hemodialysis sessions.

DISCUSSION

In this study, we aimed to predict the ICU LOS for 
hemodialysis patients with poisoning by comparing the 
performance of various ML and DL models. The importance 
of timely prediction and intervention in poisoning cases 
cannot be overstated, as delayed treatment can lead 

Figure 6. LIME plot
LIME: Local interpretable model-agnostic explanations, GCS: Glasgow Coma Scale

Figure 5. SHAP summary plot 
SHAP: Shapley Additive exPlanations, GCS: Glasgow Coma Scale, 
ICU: Intensive care unit
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to severe complications or even death. Our findings 
demonstrated that the RF model outperformed all other 
models, achieving sensitivity, accuracy, F1-score, and an 
ROC score. In comparison, the best-performing DL model, 
the CNN, achieved a sensitivity, specificity, accuracy, and an 
F1-score. Overall, ML models exhibited higher sensitivities, 
specificities, accuracies, and F1-scores than DL models, 
indicating that, especially the RF model, they are more 
effective for predicting ICU stay duration for this patient 
population.

As mentioned above, our results showed that the RF 
model surpassed all ML and DL models, achieving superior 
sensitivity, accuracy, F1-score, and ROC score. In contrast, 
the best-performing DL model, the CNN, attained notable 
sensitivity, specificity, accuracy, and F1-score. The RF model 
and the CNN are pivotal in our study due to their exemplary 
performance and complementary strengths, which highlight 
the potential of both ML and DL in medical predictions. 
The RF model’s superior sensitivity, accuracy, F1-score, 
and ROC score underscore its robustness and reliability in 
predicting ICU stay duration for hemodialysis patients with 
poisoning. This high performance can be attributed to the 
RF model’s ability to handle diverse data inputs and reduce 
overfitting through its ensemble learning approach, making 
it a powerful tool for clinical decision-making. On the other 
hand, the CNN’s impressive sensitivity, specificity, accuracy, 
and F1-score demonstrate the advanced capabilities of 
DL in capturing complex patterns within data. The CNN’s 
performance highlights its potential for applications where 
intricate data structures and high-dimensional features are 
present. Together, these models illustrate the importance 
of leveraging both traditional ML techniques and advanced 
DL methods to achieve optimal predictive accuracy and 
clinical relevance, ultimately improving patient outcomes 
through precise and timely interventions. Huang et al. (32) 
study revealed that out of all the algorithms examined, the 
RF and ensemble methods exhibited superior predictive 
performance. The study indicated that RF is particularly 
effective for predictive modeling of blood pressure during 
hemodialysis (32). Other studies (33,34) have also shown 
that CNN can be effectively used to predict hemodialysis. 

Our study findings indicate that ML models exhibited 
higher sensitivities, specificities, accuracies, and F1-scores 
than DL models, suggesting that particularly the RF 
model is more effective for predicting ICU stay duration 
for this patient population. These results underscore the 
potential of ML techniques in clinical decision-making 
processes for poisoned hemodialysis patients. The 
importance of comparing ML and DL models in our study 
lies in their distinct strengths and applications within 

predictive modeling for medical outcomes. ML models 
have shown superior sensitivities, specificities, accuracies, 
and F1-scores compared to DL models, highlighting their 
effectiveness in handling structured data and generating 
precise predictions. This superiority is crucial in clinical 
settings where accurate predictions can significantly impact 
patient care and outcomes. ML models, such as RF, excel 
in interpreting relationships between input variables and 
outcomes, making them valuable tools for predicting 
ICU stay durations and guiding timely interventions for 
poisoned hemodialysis patients (32). Conversely, DL models 
like CNN and LSTM offer advantages in capturing intricate 
patterns from complex, unstructured data, although in our 
study, their performance metrics were comparatively lower. 
By understanding and leveraging the strengths of both ML 
and DL approaches, healthcare practitioners can enhance 
their predictive capabilities and ultimately improve patient 
care and treatment outcomes in critical medical scenarios.

Jordan and Mitchell (35) mentioned that ML addresses these 
limitations by enhancing a computer program’s performance 
through experience with specific tasks and performance 
measures. Essentially, ML aims to automate analytical 
model building for cognitive tasks like object detection 
or natural language translation. This is accomplished by 
applying algorithms that iteratively learn from training 
data, enabling computers to uncover hidden insights and 
complex patterns without explicit programming (36). By 
learning from past computations and identifying regularities 
in large datasets, ML can facilitate reliable and repeatable 
decision-making. Consequently, ML algorithms have been 
successfully applied in numerous domains, including fraud 
detection, credit scoring, next-best offer analysis, speech 
and image recognition, and natural language processing 
(36).

In our study, we have identified several crucial prognostic 
factors that warrant further discussion. Our findings 
represent a significant advancement in the field, as previous 
research has predominantly focused on overall hospital 
LOS, rather than specifically addressing ICU duration 
in poisoned patients requiring hemodialysis. The most 
influential features identified in our study were GCS <8, 
intubation, AKI, PO2, BUN, metabolic acidosis, and number 
of hemodialysis sessions. Among these, Intubation score, 
GCS score, and ICU admission type emerged as the 
paramount predictors of ICU stay duration. These results 
align with and expand upon the findings of Rahimi et al. 
(37), who reported that intubation, GCS, and ICU admission 
were significant prognostic factors in poisoned patients 
undergoing hemodialysis. Furthermore, the study by 
Brenner et al. (38) on arteriovenous access failure highlights 
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the impact of complications on hospitalization duration and 
costs. This emphasizes the need for meticulous vascular 
access management in poisoned hemodialysis patients to 
potentially reduce the duration of ICU stays. Additionally, 
the study by Yan et al. (39) on racial and ethnic disparities 
in hospitalization rates among hemodialysis patients 
introduces an important dimension worthy of exploration in 
future research on ICU stay duration. While our current study 
did not specifically address these demographic factors, 
their potential influence on ICU outcomes in poisoned 
hemodialysis patients merits further investigation. Overall, 
this section of our study represents a significant advancement 
in understanding the determinants of ICU stay duration for 
poisoned patients requiring hemodialysis. By focusing on 
specific ICU-related outcomes, we provide valuable insights 
that can inform clinical practices and improve patient 
management strategies in this critical patient population. 
Future research should aim to incorporate demographic 
factors and explore their potential impact on ICU outcomes 
to build a more comprehensive understanding of the 
determinants influencing ICU stay duration in poisoned 
hemodialysis patients.

Study Limitations

The study has several limitations, including the single-
center data from Loghman Hakim Hospital, which may 
affect generalizability, and the sample size of 980 patients, 
which may not capture all variability in ICU stay duration 
for hemodialysis patients with poisoning. Future research 
should aim to include multicenter data to enhance 
generalizability and increase sample size to capture a 
broader range of variability. 

Additionally, this study acknowledges that the models 
were developed based on static data, which may limit their 
applicability to real-time clinical decision-making. Future 
research should focus on testing and validating these 
models in dynamic, real-time clinical environments to assess 
their practical utility and performance in such settings.

Moreover, this study acknowledges potential biases 
introduced by the class imbalance in the dataset, particularly 
the higher prevalence of short LOS cases compared to long 
LOS cases. Although under-sampling techniques were 
applied to address this issue, such methods might not 
fully eliminate the inherent bias, potentially impacting the 
generalizability and robustness of the model’s predictions 
for underrepresented classes. To further address class 
imbalance, methods such as SMOTE, class weighting, hybrid 

sampling, or ensemble approaches could be employed, 
alongside emphasizing evaluation metrics like F1-score and 
precision-recall-area under the curve.

Lastly, this study acknowledges that temporal trends, such 
as changes in hospital practices or treatments between 
2016 and 2020, were not explicitly accounted for in the 
analysis. Such trends could impact the generalizability of 
the findings, as variations in clinical protocols, resource 
availability, or treatment methods over time might influence 
the outcomes. Future studies should consider incorporating 
temporal stratification or modeling to assess the potential 
impact of these trends and minimize their confounding 
effects on the results.

CONCLUSION

This study aimed to predict the ICU LOS for hemodialysis 
patients suffering from poisoning, by comparing ML models 
with DL models. The results showed that among DL models, 
the CNN performed best with sensitivity, specificity, accuracy, 
and F1-score values, while the DNN achieved the best ROC 
value. However, the RF model, an ML model, outperformed 
all other DL and ML models, achieving higher scores across 
sensitivity, accuracy, F1-score, and ROC metrics.

In general, ML models demonstrated superior performance 
compared to DL models, with higher sensitivities, 
specificities, accuracies, and F1-scores. These findings 
suggest that ML models, particularly the RF model, are more 
effective for predicting ICU stay duration for hemodialysis 
patients with poisoning. Therefore, incorporating ML 
models into clinical practice could enhance the prediction 
and management of ICU stay durations in this patient 
population, potentially improving outcomes and resource 
allocation.
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