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Investigation of an Open AI Model in the Analysis of STN 
Microelectrode Recordings: Consistency With Clinicians 
and Potential for DBS Targeting
STN Analizinde Açık Bir Yapay Zeka Modelinin Araştırılması Mikroelektrot 
Kayıtları: Klinisyenlerle Tutarlılık ve DBS Hedefleme Potansiyeli

ABSTRACT

Objective: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) requires precise electrode placement, often assisted by microelectrode 
recording (MER). However, the interpretation of MER remains highly subjective, varying among clinicians based on experience. This study evaluates 
the ability of an artificial intelligence (AI) model (ChatGPT 4.0) to classify STN MER recordings and evaluate its consistency with experienced and 
less experienced clinicians.

Methods: A total of 32 STN MER recordings were independently evaluated by two experienced clinicians, two less experienced clinicians, 
and the AI model. Classifications were assigned to artifact, thalamus, silent, STN, suspicious STN, substantia nigra, and N/A (no recording), 
categories. Fleiss’ Kappa was used to assess inter-rater consistency, while Cohen’s Kappa measured agreement between generative pre-trained 
transformer (GPT) and each clinician. Additionally, precision and recall were calculated for each category.

Results: The overall Fleiss’ Kappa among all evaluators was 0.544, with higher agreement among experienced clinicians (0.738) compared to 
less experienced ones (0.631). GPT showed low agreement with both groups, with Cohen’s Kappa values ranging from 0.341 to 0.375. GPT 
demonstrated the highest accuracy in detecting STN (73.47%), but its performance was significantly lower for other categories. Within-category 
consistency (14.28%) indicated variability in transition zones, with a misclassification rate of 45.87% compared to the majority opinion of clinicians.

Conclusion: While GPT exhibited partial consistency with clinicians in identifying the STN, its reliability in classifying transition zones and adjacent 
structures was low. For AI to serve as a reliable tool in STN targeting, further refinement of its algorithms and expanded training datasets is 
necessary. Although GPT is not yet suitable for clinical decision making, its potential for future DBS applications is promising.
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ÖZ

Amaç: Subtalamik nükleusun (STN) derin beyin stimülasyonu (DBS), genellikle mikroelektrot kayıtları (MER) ile desteklenen hassas elektrot 
yerleşimi gerektirir. Ancak, MER’nin yorumlanması oldukça özneldir ve klinisyenler arasında deneyime bağlı olarak değişkenlik gösterebilir. Bu 
çalışma, bir yapay zeka (YZ) modelinin (ChatGPT 4.0) STN MER kayıtlarını sınıflandırma yetisini değerlendirerek, deneyimli ve daha az deneyimli 
klinisyenlerle tutarlılığını analiz etmektedir.

Gereç ve Yöntem: Toplam 32 STN MER kaydı, iki deneyimli klinisyen, iki daha az deneyimli klinisyen ve YZ modeli tarafından bağımsız olarak 
değerlendirildi. Kayıtlar artefakt, talamus, sessiz, STN, şüpheli STN, substantia nigra ve N/A (kayıt yok) kategorilerine ayrıldı. Değerlendiriciler 
arasındaki tutarlılık Fleiss’ Kappa, üretici önceden eğitilmiş dönüştürücü (GPT) ile her bir klinisyen arasındaki uyum ise Cohen’s Kappa ile ölçüldü. 
Ayrıca, her kategori için kesinlik ve duyarlılık hesaplandı.

Bulgular: Tüm değerlendiriciler arasında genel Fleiss’ Kappa 0,544 olarak bulundu; deneyimli klinisyenler arasında tutarlılık 0,738, daha az 
deneyimli klinisyenler arasında ise 0,631 idi. GPT’nin her iki grup ile uyumu düşük olup, Cohen’s Kappa 0,341 ila 0,375 arasında değişti. GPT, 
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INTRODUCTION

The subthalamic nucleus (STN) is one of the most 
frequently targeted structures in deep brain stimulation 
(DBS) for Parkinson’s disease (1). Given that the accuracy of 
electrode placement in DBS surgery directly impacts clinical 
outcomes, microelectrode recordings (MER) obtained 
intraoperatively serve as a crucial tool for delineating the 
boundaries of the STN (2-4). The interpretation of MER 
data relies on clinical expertise to distinguish the STN from 
surrounding structures (5-7). However, precisely defining 
the exact boundaries of the STN and ensuring consistency 
among different evaluators remain challenging (8). The 
interpretation of MER recordings is inherently subjective, 
often yielding varying results when assessed by different 
clinicians. These discrepancies can arise due to differences 
in evaluator experience and anatomical variations in 
the STN among individuals (9). In particular, identifying 
the onset and termination points of the STN, as well as 
accurately interpreting transition zones involving silent 
areas or structures such as the thalamus and substantia 
nigra, presents a significant challenge (10). Therefore, it 
is crucial to develop methods that enhance consistency 
among clinicians and make the decision-making process 
more objective.

In recent years, artificial intelligence (AI) and machine 
learning-based models have been increasingly utilized 
as supportive tools in the analysis of neurophysiological 
recordings. The automated classification of MER recordings 
can both accelerate the surgical process by saving time and 
provide a more objective analytical approach by minimizing 
human-induced variations in interpretation (11,12). 
However, the reliability of AI models and their consistency 
with clinicians remain subjects of ongoing debate (2,8,9).

The aim of this study is to compare how four clinicians (two 
experienced and two less experienced) and the OpenAI 
ChatGPT 4.0 model evaluate STN MER recordings, and to 
statistically analyze the consistency of their interpretations. 
The study examines the agreement among clinicians with 
different levels of experience, the consistency between 
clinicians and AI, and the distribution of errors across 
specific depth levels. In particular, it investigates the extent 

to which uncertainties in the boundary regions of the STN 
hinder the establishment of a shared interpretation, and 
it assesses the consistency of evaluations across different 
classification categories. By selecting ChatGPT as the AI 
model, the study aims to assess the reliability of a widely 
accessible software that clinicians can use. These analyses 
are expected to provide valuable insights into improving 
clinical decision-making in STN targeting, evaluating the 
potential of AI models, and developing new strategies 
for achieving a more objective interpretation of STN MER 
recordings.

METHODS

Participant Selection

This study was conducted with the approval of the Scientific 
Research Ethics Committee of the University of Health 
Sciences Türkiye, Başakşehir Çam and Sakura City Hospital 
(approval no: 47, date: 04.12.2024). Between 2021 and 2024, 
a total of thirty-two MERs from patients diagnosed with 
Parkinson’s disease who underwent STN-DBS performed 
by the same surgical team were included in this study. The 
surgical decision was made by a multidisciplinary movement 
disorder board, including a neurosurgeon, movement 
disorder neurologist, psychiatrist, neuropsychologist, 
speech therapist, and physiotherapist. Patients were 
evaluated based on objective criteria established by the 
board, and those deemed suitable for DBS surgery.

All patients underwent comprehensive preoperative clinical 
evaluations, including the Unified Parkinson’s Disease Rating 
Scale, Parkinson’s Disease Questionnaire, and an extensive 
neuropsychological test battery. Patients included in the 
study underwent these assessments both preoperatively 
and postoperatively. Only those who demonstrated 
significant clinical benefit from DBS, had confirmed STN 
stimulation in all postoperative evaluations, and continued 
to live with an active stimulator system, were considered for 
analysis.

Patients with incomplete, inaccurate, or unreliable 
electrophysiological recordings, those who did not 
experience the expected benefit from DBS, or those whose 
stimulation systems were deactivated were excluded from 

STN tespitinde en yüksek doğruluğu (%73,47) gösterse de, diğer kategorilerde performansı belirgin şekilde daha düşüktü. Kategori içi tutarlılığı 
%14,28 olarak belirlenen modelin, geçiş bölgelerindeki değişkenliği yüksek olup, klinisyenlerin çoğunluk görüşüne göre yanlış sınıflandırma oranı 
%45,87idi.

Sonuç: GPT, STN’yi tanımlamada klinisyenlerle kısmi bir tutarlılık gösterse de, geçiş bölgeleri ve komşu yapıları sınıflandırmadaki güvenilirliği 
düşüktü. YZ’nin STN hedeflemede güvenilir bir araç olabilmesi için algoritmalarının iyileştirilmesi ve eğitim veri setlerinin genişletilmesi gereklidir. 
GPT henüz klinik karar vermeye uygun olmasa da, gelecekteki DBS uygulamaları için umut vadetmektedir.

Anahtar Kelimeler: Derin beyin stimülasyonu, subtalamik nükleus, mikroelektrot kaydı, yapay zeka, makine öğrenmesi, ChatGPT
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the study. Written informed consent was obtained from all 
of the participants.

Surgical Planning and Electrophysiological Recording

All patients underwent high-resolution 1.5 Tesla or 3 Tesla 
magnetic resonance imaging (MRI) 1 to 3 days prior to 
surgery. The MRI protocol included T1-weighted images, 
T2-weighted images, and contrast-enhanced T1 images, as 
well as diffusion tensor imaging (DTI). The DTI sequences 
were used to map white matter tracts. Targeting was 
performed using both direct and indirect methods. The 
dorsolateral region of the STN was identified as the optimal 
target for controlling motor symptoms in Parkinson’s 
disease. The initial coordinates were determined based 
on the anterior commissure-posterior commissure (PC) 
line, with a starting reference of X: ±12, Y: -2, Z: -4 mm. 
Adjustments were made using direct MRI visualization to 
precisely target the dorsolateral STN. All surgical planning 
was conducted using Stealth and BrainLab Elements™ 
surgical navigation software. All patients remained awake 
during surgery, and a stereotactic frame was placed on 
the morning of the procedure. A 1-mm slice computed 
tomography (CT) scan was obtained with the frame in 
place and fused with preoperative MRI to determine the 
stereotactic coordinates. MER and macrostimulation were 
performed in all patients. Electrophysiological recordings 
were obtained intraoperatively using Alpha Omega, 
AlphaRS, and FHC Guideline 5 systems. The MER technique 
had been detailed in a previous study (13). MER was initiated 
10 mm above the target coordinate, advancing in 1-mm 
increments until reaching 5 mm below, and then in 0.5 mm 
increments until the final depth was reached. Recordings 
were terminated when the STN electrophysiological activity 
ended, when a substantia nigra pars reticulata recording was 

obtained, or, at +4.5 mm. Macrostimulation was performed 
in the orientation where the longest STN recording was 
observed. MER recordings were stored in PDF format for 
further analysis (Figure 1). During macrostimulation, motor 
responses to stimulation were observed and evaluated. The 
placement of the DBS electrodes was guided by MER and 
macrostimulation findings, following a Ben-Gun orientation. 
The final positioning of the electrodes ensured that the 
middle contact points were aligned with the intended 
target, while the tip of the electrode was placed in contact 
with the substantia nigra. The decision to use directional 
or non-directional electrodes was made intraoperatively 
based on electrophysiological findings and the patient’s 
motor response. DBS hardware included Boston Scientific 
Gevia, Genus, and Medtronic Activa RC/PC models. The 
stimulator implantation was performed during a single 
surgical session, with the device placed in the midclavicular 
region. Postoperatively, 1 mm slice CT scans were fused with 
preoperative MRI to assess electrode placement. Revisions 
were performed for patients with a deviation greater than 2 
mm from the planned target. Deep brain stimulators were 
typically activated within 3 to 7 days postoperatively. Prior 
to activation, patients underwent a 12-hour medication 
withdrawal. Neurology and neurosurgery specialists 
performed stimulator activation, and motor effects were 
evaluated to determine stimulation parameters. After 
optimizing individualized medication and stimulation 
settings, patients were discharged.

Artificial Intelligence Analysis Process

In this study, 32 STN MERs were independently evaluated by 
two experienced and two less experienced MER clinicians. 
Each clinician was instructed to classify each depth level 
into one of the following categories: artifact, thalamus, 

Figure 1. Sample microelectrode recording (MER) output. This figure shows a sample MER output, displaying depth annotations on the left side 
and 10-second recordings obtained at each depth level
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silent, STN, suspicious STN, substantia nigra, and N/A (no 
recording). The same recordings were also analyzed by 
the ChatGPT 4.0 model, and the results were recorded. A 
specially designed prompt was used to enable ChatGPT to 
analyze MER recordings. Through this prompt, the model 
independently assessed wave patterns at each depth 
level and assigned them to the predetermined categories. 
The prompt structure used for generative pre-trained 
transformers (GPTs) interpretation of MER recordings was 
designed as follows (8,9,14). 

Task Description: This prompt was used to analyze 
10-second MER recordings in PDF format, categorizing 
wave patterns based on depth levels. Each depth level was 
independently evaluated. 

Depth Values: Recordings began 10 mm above the target 
and proceeded down to -4.5 mm. The scale on the left side 
of the recordings indicated depth levels, and the analysis 
was conducted separately for each level.

Categories: Evaluations were assigned to one of the 
following categories based on wave patterns:

•	 Silent: Regions with little to no electrical activity. The wave 
pattern is nearly silent. This activity is typically observed 
outside high-activity regions such as the STN, the thalamus, 
or within the zona incerta.

•	 Thalamus: Contains low-frequency, regular patterns. 
Typical firing frequency ranges from 10 to 30 Hz, with action 
potential amplitude between 50 and 100 mV. This region is 
involved in motor and sensory transmission and is typically 
observed before the STN.

•	 Suspicious STN: Regions where baseline broadening 
begins or diminishes are included in this category. Changes 
in frequency and amplitude occur before or after bursts 
intensify. This phenomenon is generally observed after 
the thalamus and in transition zones between the STN and 
substantia nigra.

•	 STN: High-frequency, high-amplitude regions containing 
intense burst activities are classified as STN. The firing 
frequency ranges from 15 to 30 Hz, with action potential 
amplitude between 60 and 80 mV. It plays a critical role in 
motor control and is observed at depths where baseline 
broadening becomes prominent.

•	 Substantia Nigra: Refers to specific regions characterized 
by low-frequency, regular activity. Dopaminergic neurons in 
the pars compacta fire at 1-8 Hz, while GABAergic neurons 
in the pars reticulata fire at 20-40 Hz. Action potential 
amplitude ranges from 40 to 80 mV.

•	 Artifact: Disturbances or unwanted noise arising during 
electrical recording are classified as artifacts. These may 
result from electrode movement or environmental factors.

•	 N/A: Depths where no recordings were obtained or 
where the data were unprocessable were classified as N/A. 
Cases where measurements were not performed during 
electrode transitions were also included in this category.

Analysis Principles: Each depth level was analyzed 
independently. All assessments were performed objectively 
based on predefined wave patterns.

Output Format: All analyses were presented in a table 
format, systematically recording the assigned categories for 
each depth level.

Throughout the study, manual corrections were made 
only in cases of technical errors in GPT’s decision-making 
processes. However, no external intervention was applied 
to the category decisions made by the model.

Statistical Analysis

To assess the overall consistency between the classifications 
made by clinicians and GPT, Fleiss’ Kappa coefficient 
was calculated. Fleiss’ Kappa is a multi-rater agreement 
coefficient used to measure the consistency among 
multiple evaluators. Additionally, the consistency of 
each clinician with GPT was calculated separately using 
Cohen’s Kappa coefficient. Cohen’s Kappa is a statistical 
method that quantifies the level of agreement between 
two raters, adjusting for chance agreement to determine 
the actual level of consistency. Values below 0 indicate 
no agreement between evaluators, suggesting a level of 
disagreement worse than randomness. Values between 
0.00 and 0.20 indicate very weak agreement, meaning no 
meaningful association between evaluators’ decisions. 
Values between 0.21 and 0.40 indicate weak agreement, 
where the evaluators’ decisions are only slightly better than 
random chance. Values between 0.41 and 0.60 indicate 
moderate agreement, suggesting that evaluators partially 
share a common perspective. Values between 0.61 and 0.80 
indicate strong agreement, indicating evaluators mostly 
make the same decisions. Values between 0.81 and 1.00 
indicate almost perfect agreement, meaning evaluators 
reach nearly identical classifications. The consistency among 
experienced clinicians and less experienced clinicians were 
analyzed separately. Additionally, the agreement between 
clinician groups and GPT was compared. Furthermore, 
GPT’s reliability for each classification category was 
assessed using precision and recall calculations to evaluate 
the accuracy of its assigned classifications. For depth-
based analysis, classifications from GPT and clinicians were 
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compared across different depth levels, with a particular 
focus on the transition zones at the STN’s entry and exit 
points. The stability of GPT’s classifications was measured 
by evaluating its consistency with previous and subsequent 
predictions, providing insights into category transition 
consistency. This analysis aimed to determine how reliably 
GPT identified specific categories and to what extent 
its predictions fluctuated in transition zones. To assess 
misclassification rates, cases where GPT’s classification did 
not align with the majority opinion were identified. The 
majority opinion was defined as the most frequently chosen 
category among the four clinicians, and GPT’s consistency 
with this majority classification was analyzed. Statistical 
analyses were conducted using SPSS version 22 (IBM Corp., 
Armonk, NY, USA), and data visualization was performed 
with Python Matplotlib (Matplotlib Development Team, 
Python Software Foundation, USA).

RESULTS 

In this study, 32 STN MERs were independently evaluated by 
two experienced clinicians, two less experienced clinicians, 
and an AI model (ChatGPT 4.0), and the results were 
analyzed statistically. The overall consistency among all 
evaluators, calculated using Fleiss’ Kappa coefficient, was 
found to be 0.544. The Fleiss’ Kappa coefficient between 
the experienced clinicians was 0.738, while the Fleiss’ 
Kappa coefficient between the less experienced clinicians 
was 0.631 (Figure 2). The agreement between GPT and 
clinicians was analyzed using Cohen’s Kappa coefficient. 
Cohen’s Kappa coefficient between experienced clinician 1 
and GPT was 0.356, while the value between experienced 

clinician 2 and GPT was 0.375. Among the less experienced 
clinicians, Cohen’s Kappa coefficient between beginner 
clinician 1 and GPT was 0.341, and between beginner 
clinician 2 and GPT was 0.375. These findings indicate 
that GPT exhibited low consistency with both experienced 
and less experienced clinicians (Figure 3). In category-
based analysis, the accuracy of GPT in identifying the STN 
category was 73.47%; the silent category, it was 66.41%; the 
artifact category, it was 42.85%; the thalamus category, it was 
7.69%; and the substantia nigra category, it was 3.33%. GPT 
demonstrated the highest accuracy in identifying the STN 
category, suggesting significant agreement with clinicians 
in recognizing the STN region. The 66.41% accuracy for 
the silent category indicates that the model was relatively 
successful in identifying low-activity regions. For the artifact 
category, the accuracy was 42.85%, indicating that the 
model struggled to distinguish artifacts caused by electrode 
movement or environmental factors. The accuracy rates for 
the thalamus and substantia nigra categories were 7.69% 
and 3.33%, respectively, indicating that GPT was unreliable 
in classifying these regions. The precision for STN was 
0.73, and recall for STN was 0.65. For the silent category, 
precision was 0.66, and recall was 0.59. For artifact, precision 
was 0.42, and recall was 0.37. For thalamus, precision was 
0.08, and recall was 0.12. For the substantia nigra, precision 
was 0.03, and recall was 0.05. These findings indicate that 
GPT was relatively successful in identifying the STN, but 
it exhibited a significant error margin in transition zones 
(Figure 4). In depth-based analysis, GPT’s category transition 
consistency was calculated as 51.5%, indicating that the 
model selected the same category for consecutive depth 

Figure 2. Fleiss’ Kappa agreement scores among evaluator groups. 
This figure illustrates the overall Fleiss’ Kappa agreement scores 
among all evaluators. The overall agreement was calculated as 0.544, 
reflecting moderate consistency among all evaluators. Among the 
experienced clinicians, the agreement score was 0.738, indicating 
strong consistency, while the agreement score among the less 
experienced clinicians was 0.631, showing moderate consistency

Figure 3. Cohen’s Kappa agreement between GPT and clinicians. 
This figure shows the Cohen’s Kappa agreement scores between GPT 
and individual clinicians

GPT: Generative pre-trained transformer
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levels 51.5% of the time. The misclassification rate was 
found to be 45.87%, meaning that GPT produced different 
results from the majority opinion of the clinicians in 45.87% 
of cases. To measure the model’s tendency to maintain a 
category assignment over multiple depths, within-category 
consistency was calculated as 14.28%, indicating that GPT 
exhibited a high degree of variability in its decision-making 
process.

DISCUSSION

DBS procedures are becoming increasingly widespread, 
and successfully performing these procedures requires a 
high level of expertise. In some cases, the inability to obtain 
preoperative imaging of the desired quality or the difficulty 
in identifying the STN sweet spot solely through radiological 
methods demonstrate that relying exclusively on imaging 
techniques does not always lead to optimal targeting 
(8,9,11,12). MER is a valuable alternative for more reliable 
targeting. However, MER techniques are still predominantly 
reliant on clinicians’ subjective visual and auditory 
assessments during surgery, which introduces variability 
in outcomes. To address this, AI-based technologies have 
been developed to both assist novice surgical teams in 
mastering this highly specialized technique and to reduce 
subjectivity in decision-making. These advancements aim 
to enable real-time and automated evaluation of MER 
recordings, enhancing the objectivity and consistency of the 
process (2,8,15). 

These methods have primarily been developed by first 
implementing preprocessing and artifact removal steps, 
followed by the application of techniques designed to 
detect differences in various signal characteristics (9,12). 
Some approaches focus on spike-related parameters (16,17) 
others analyze power changes in specific frequency bands 
(18-20), and yet others rely on wavelet analysis (21,22). 
Another group of methods is based entirely on deep learning 
algorithms (23-26). In these studies, the supervised learning 
method has been predominantly used for AI training. 
The primary reason for this preference is that supervised 
learning allows AI to be trained with smaller datasets, 
making the training process easier and faster. Although 
supervised learning enables rapid implementation, its 
performance ceiling is inherently limited by the expertise of 
the annotators who label the training data. Since AI learns 
both correct and incorrect classifications, its effectiveness is 
directly influenced by the accuracy and consistency of the 
human-provided labels (2,8,15). Despite these limitations, 
the full integration of AI-driven real-time models into DBS 
procedures appears to be a realistic near-future possibility. 
AI could serve as a guidance tool for specialists by providing 
feedback and fine-tuning suggestions, thereby improving 
decision-making in MER interpretation (15). When designing 
this study, our goal was to evaluate an AI model with access 
to open-source big data and assess its ability to interpret 
MER recordings independently, without relying on clinician 
directives or modifications to its source code. The objective 
was to determine whether the model could function like 
a human evaluator who retrospectively analyzes MER 
recordings and to assess its suitability for clinical use. In this 
regard, our study differs from previous AI-based research in 
this field. At this point, an unsupervised machine learning 
approach, which could eliminate the need for human 
expert input, was considered. While in theory this method 
could overcome the limitations of supervised learning 
and lead to more advanced models, the requirement for 
extremely large datasets in unsupervised learning remains a 
significant barrier. At present, no clinical setting has access 
to datasets of the necessary scale, making the application 
of unsupervised learning in this field an unrealistic goal. 

Another significant issue with the existing methods is that 
they are either commercially available at high costs or, if 
open source, they require complex technical knowledge 
and software expertise, making them difficult for clinicians 
to utilize. At this point, the idea of using ChatGPT, which is 
easily accessible and does not require extensive technical 
background knowledge, emerges as a potential tool 
to assist in the interpretation of MER recordings. In this 
study, we aimed to explore this possibility by evaluating 32 

Figure 4. Performance of GPT in identifying categories: accuracy, 
precision, and recall. This figure presents the accuracy, precision, and 
recall values for each category evaluated by GPT. The STN category 
showed the highest performance, with an accuracy of 73.47%, 
precision of 0.734, and recall of 0.653, indicating relatively successful 
identification of the STN region

GPT: Generative pre-trained transformer, STN: Subthalamic nucleus
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STN MERs, independently assessed by two experienced 
clinicians, two less experienced clinicians, and an AI model 
(ChatGPT 4.0), with statistical analyses conducted on the 
results. However, the findings indicate that this AI model 
still exhibits low consistency with experienced and less 
experienced clinicians.

In this study, GPT demonstrated the highest accuracy in the 
STN category, indicating partial consistency with clinicians 
in identifying the STN region. Similar findings have been 
reported in AI models focused on background neural activity 
(17,27-29). The STN exhibits twice the background activity 
compared to its neighboring structures (30), a phenomenon 
likely associated with the high neuronal density within the 
STN (14). Since the AI model used in this study primarily 
focuses on basal activity, it performed better in identifying 
the STN. However, the study also revealed that the model 
has a significant margin of error in the STN entry and exit 
zones as well as in adjacent structures. In the model proposed 
by Rajpurohit et al. (16), the accuracy for STN entry and exit 
regions was reported to be between 60% and 80%. Similarly, 
Chaovalitwongse et al. (28) successfully identified STN and 
its neighboring structures with approximately 90% accuracy 
using a combination of seven spike-dependent and six spike-
independent approaches. These findings highlight that 
feature-based machine learning models have demonstrated 
higher accuracy than the AI model in our study.

In summary, our study demonstrates that while GPT shows 
partial consistency with clinicians in identifying the STN, it 
exhibits low accuracy in other categories. The low within-
category consistency (14.28%) indicates that the model 
exhibits significant variability in transition zones and makes 
unstable decisions. Although GPT has achieved a certain 
level of accuracy in STN detection, its reliability remains low 
in differentiating transition zones and low-activity structures. 
For the AI model to be considered a supportive tool in STN 
targeting, its training must be expanded, and its algorithms 
must be refined to enhance precision.

Study Limitations

This study has several limitations. First, the evaluation of 
GPT’s performance was based on a limited dataset of MER 
recordings obtained from a single center, which may restrict 
the generalizability of the results. Second, the ground 
truth was established through the consensus of clinicians, 
which, although a common method, may still reflect 
inter-rater variability and subjective interpretation. Third, 
the model was not specifically trained or fine-tuned on 
electrophysiological data related to DBS, which may have 
affected its performance in distinguishing between critical 
anatomical regions. Lastly, technical constraints in data 

formatting and input length limitations may have impacted 
the accuracy and consistency of the model’s classifications.

CONCLUSION

AI-based algorithms, which are increasingly assisting 
us in various fields, also hold significant potential to 
support DBS procedures. Soon, the impact of open AI 
models in clinical practice is expected to grow. However, 
at present, many clinicians remain unable to benefit from 
these advancements due to both technical and financial 
barriers. While ChatGPT is widely used in various fields as 
a practical and cost-effective tool, our findings indicate that 
it is not yet sufficiently reliable for DBS-related applications. 
Nonetheless, its potential for future development is 
promising. At this stage, while the model may serve as a 
guiding tool, its integration into clinical decision-making 
processes still appears to be premature. Further studies, 
in light of ongoing advancements and updates, may reveal 
whether this situation will change.
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